Мир науки

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Загрузка...

Иммунодефицит называют вторичным, если он возникает вследствие заболевания Неиммунная природа или действия на организм определенного агента - радиации, лекарственных препаратов и т.д..

 

 

В мире наиболее распространенной причиной вторичных иммунодефицитов является недостаточное и неправильное питание. В развитых странах причиной вторичных иммунодефицитов могут быть лекарственные препараты, используемые в противоопухолевой терапии, и иммуносупрессанты, применяемые при трансплантации органов и аутоиммунных заболеваниях. Возникновение вторичных иммунодефицитов часто наблюдается как следствие развития аутоиммунных заболеваний, при тяжелых бактериальных и вирусных инфекциях.

 

Иммунодефициты, обусловленные нехваткой питания. Недостаток белков и энергетическая недостаточность пищи часто наблюдаются в развивающихся странах, и ассоциируются с нарушением клеточного и гуморального иммунитета в ответ на микроорганизмы. Основной причиной заболеваемости и смертности людей, недостаточно питаются, являются инфекционные заболевания. Причины этих иммунодефицитов еще точно не установлено, но предполагают, что серьезные нарушения метаболизма в пораженных лиц, косвенные ненормальным поступлением белков, жиров, витаминов и минералов, влияют на созревание и функции клеток иммунной системы.

 

Одним из признаков недостаточного питания является атрофия лимфоидной ткани. У истощенных детей часто развивается так называемая «пищевая тимэктомия», характеризующееся нарушением структуры тимуса, общим уменьшением количества лимфоцитов в нем и атрофией тимусзалежних периартериолярних участков селезенки и паракортикальная участков лимфатических узлов.

 

Недостаточного обеспечения питания белками и употребления малоенергетичнои пищи часто наблюдают угнетение клеточного иммунитета, о чем свидетельствует снижение количества CD4 Т-лимфоцитов. Лимфоциты имеют сниженную способность отвечать пролиферацией на митогены. Такие изменения количества и функции Т-клеток могут быть обусловлены снижением активности гормонов тимуса. Недостаточное обеспечение пищи белками и энергией в ослабленных лиц приводит к изменениям в фагоцитарной функции макрофагов, т.е. к нарушению способности этих клеток разрушать поглощены микробы. Наблюдается снижение уровней компонентов комплемента С3, С5 и фактора В, уменьшение выработки цитокинов ИЛ-2, ФНО, ИФН.

 

Иммунодефициты, индуцированные действием лекарственных препаратов. Имуномодулювальнии лекарственные препараты могут существенно подавлять функции иммунной системы.

 

Глюкокортикоиды являются достаточно сильными природными модуляторами иммунной ИиЛИюИиЛи. во-первых, они влияют на состав лейкоцитов, циркулирующих. Действие глюкокортикоидов индуцирует лимфоиитопению, причем CD4 ^-клетки являются чувствительными, и их количество уменьшается в большей степени, чем Т-лимфоцитов других субпопуляций. Кроме того, в крови человека заметил ости

 

моноцитов, эозинофилов и базофилов. Ввод стероидных препаратов> к

 

нейтрофилией вследствие выхода зрелых клеток из костного мозга и задержки их в циркуляции. Стероидные препараты влияют также на определенные функции клеток иммунной системы. Доказано, что стероиды тормозят активацию и пролиферацию Т-клеток и ингибируют выработку ФНО и ИЛ-1 моноцитами. Замечено, что после введения стероидных препаратов снижается продуцирование целого ряда цитокинов: ИФН-Y, ИЛ-1, ИЛ-2, ИЛ-6, ИЛ-10.

 

Формирование иммунодефицитных состояний могут вызвать препараты, используемые для иммуносупрессии при аллотрансплантации. Например, циклоспорин А и его аналог такролимус, тормозящих проведение активационных сигналов от рецепторов цитокинов, сдерживающее действуют не только на лимфоидные клетки, но и на клетки нелимфоидного происхождения, поскольку молекулярные мишени этих препаратов широко представлены в различных тканях. Препараты типа сиролимус и эверолимуса: активационного сигнала от костимуляторних молекул и рецепторов цитокинов.

 

Они тормозят синтез нуклеиновых кислот в стимулированных клетках. Побочные эффекты этих. "Еригаються в различных типах клеток. Кроме того, у пациентов, которых лечат этими

 

п ют повышение частоты возникновения пневмонии. У пациентов, получающих

 

п супрессию созревания клеток костного мозга, нарушение функции пищеварительного

 

канала и осложненные инфекции, вызываемые грибами.

 

Различные препараты, которые используются в противоопухолевой терапии, могут значительно подавлять функции иммунной системы. Супрессию иммунного ответа могут вызвать такие антиметаболиты, как азатиоприн и меркаптопурин, нарушающие синтез РНК и ДНК вследствие торможения инозиновой кислоты - предшественника синтеза аденина и гуанина. Метотрексат - аналог фолиевой кислоты, блокирует метаболические процессы, происходящие с ее участием и необходимые для синтеза ДНК. После применения метотрексата наблюдается длительное снижение в крови уровней иммуноглобулинов всех классов. Хлорамбуцил и циклофосфамид алкилують ДНК, и сначала использовали для лечения онкобольных. Однако исследование их цитотоксического действия на лимфоциты обусловили использование этих препаратов как иммуносупрессивных терапевтических агентов.

 

Инфекционные иммунодефициты. К развитию иммуносупрессии могут приводить различные виды инфекций. Один из самых известных вирусов, непосредственно поражает клетки иммунной системы, - вирус иммунодефицита человека (ВИЧ).

 

Синдром приобретенного иммунодефицита (СПИД) вызывается ВИЧ и характеризуется различными клиническими проявлениями, в том числе глубокой иммуносупрессией, ассоциированной с рядом оппортунистических инфекций и опухолей, и нарушениями нервной системы.

 

Вирус иммунодефицита человека было описано в 1983 г. одновременно французскими и американскими учеными. Вирус относится к ретровирусов, в которых генетический материал находится в виде РНК и превращается в ДНК с помощью обратной транскриптазы.

 

Существуют два типа ВИЧ-ВИЧ 1 и ВИЛ2. Они похожи на 40 - 60% на уровне генома, но ВИЛ2 является менее контагиозным и патогенным, чем ВИЧ1.

 

Вирусные частицы, которые инициируют инфицирования, могут находиться в различных жидкостях организма, включая кровь, семенную жидкость, и попадают в организм другого лица во время полового контакта или медицинских манипуляций (переливание крови, использования нестерильных игл). Доказано, что 75% поражений ВИЧ1 происходит вследствие гетеросексуальных отношений.

 

Частица вируса состоит из двух идентичных цепей вирусной РНК, каждая длиной 9,2 kb, упакованные в корове белки вируса и окружены билипидного слоем плазматической мембраны клетки хозяина. На поверхности мембраны размещены вирусные гликопротеиды, необходимые для адсорбции вирусной частицы на чувствительных клетках и попадания внутрь последних.

 

Геном ВИЧ имеет характерную для ретровирусов структуру. Длинные концевые повторы (Long terminal repeats - LTR) необходимы для интеграции в геном хозяина и репликации вирусных генов. Участок генома gag кодирует корове структурные белки, a env - поверхностные гликопротеиды gp120 и gp41. Последовательность Рои кодирует обратную транскриптазу, протеазу и интегразы - белки, необходимые для репликации вируса. Геном вируса содержит также ряд регуляторных генов rev, tat, vif, nef vpr и vpu, продукты которых регулируют образование вирусных частиц. Адсорбция вируса на чувствительных клетках происходит в результате взаимодействия поверхностного гликопротеидными комплекса вириона gp120/gp41 с комплементарными структурами CD4 и G-билокзвьязувальним рецептором (GCR) или, как его еще называют, корецепторов, на поверхности чувствительных клеток хозяина. Процесс проникновения вируса HIV в клетку еще до конца не изучен. Взаимодействие gp120 с CD4 индуцирует конформационные изменения в gp120, что приводит к экспозиции ранее скрытых доменов, которые взаимодействуют с корецепторов. При этом образуется тройной комплекс gp120-CD4-корецептор. Образование тройного комплекса gp120-CD4-корецептор приводит к дополнительным конформационных изменений в gp120, которые передаются в вирусного трансмембранного гликопротеида gp41 и индуцируют изменения структуры последнего. Вследствие этого N-конечная fusion последовательность gp41 направляется к клеточной мембране, где она входит в билипидный слой и инициирует слияние вирусной и клеточной мембран.

 

Большинство GCR, используемых ВИЧ для попадания в клетку, являются рецепторами для хемокинов. Первый идентифицирован корецептор, CXCR4, используют Т-клитинотронни, синцитиуминдукувальни (SI) штаммы ВИЧ. Другой корецептор, CCR5, используют вирусы, тропных к макрофагов, не образующих синцитиумы (NSI). Предполагают, что эти два типа корецепторов чаще всего используются вирусом и поэтому играют основную роль для поддержания инфекции ВИЧ in vivo. Существуют также другие GCR, как было показано in vitro, способствующих поражению клетки определенными штаммами ВИЧ: CCR2b, CCR3, CCR8, CCR9, CX3CR1 и др.. Например, CCR3 способствует инфицированию макрофагов и микроглии. Первичной мишенью инфицирования в таком случае нервная система. После проникновения вируса в клетку корове белки вириона нарушаются и РНК-геном ВИЧ с помощью обратной транскриптазы превращается в форму подвийнонитчастои ДНК, которая поступает в ядро инфицированной клетки. Вирусная интегразы способствует включению вирусной ДНК в геном клетки хозяина. В таком транскрипционно неактивном состоянии вирус может существовать на протяжении месяцев, а то и лет. При таких условиях происходит слабое продуцирования вирусных белков. Этот период инфекции называют латентным.

 

Экспрессию определенных генов ВИЧ можно разделить на два периода. Течение раннего периода экспрессируются ранние регуляторные гены nef, tat и rev. Поздние гены включают рои gag и env, продукты которых являются структурными компонентами вирусной частицы. мРНК, кодирующей различные белки ВИЧ, получается в результате альтернативного сплайсинга общего транскрипта полного вирусного генома. Некоторые белки вируса образуются в результате расщепления общего белкового предшественника клеточными протеазами. Например, продукт гена env общий предшественник gp160 расщепляется на два компонента - gp120 и gp41, которые нековалентно соединены и образуют комплекс в плазматической мембране клетки. Составление вирусных частиц начинается с упаковки РНК-транскриптов вируса в нуклеопротеидных комплексов с коревых белков и ферментов, необходимых для следующего цикла интеграции вируса. Нуклеопротеидный комплекс затем обволикуеться плазматической мембраной клетки с ексгоесованимы на ней вирусными белками gp120/gp41 и видбруньковуеться от клетки. Этот процесс приобретает стихийный характер, и клетка-мишень погибает.

 

Сайты нахождения вируса в организме можно разделить на клеточные и анатомические. Лимфатические узлы являются активными анатомическими сайтами репликации вируса. Основные клетки, которые поражаются при инфекции ВИЧ, является ОТ4-позитивные клетки, которыми прежде всего являются Т-хелперы, содержащие около 99% репликувального вируса в организме хозяина. Активность вируса истощает популяцию Т-хелперов, что приводит к нарушению гомеостаза всей иммунной системы. ОТ4-антиген несут также макрофаги, дендритные клетки, определенная популяция активированных CD8 Т-лимфоцитов. Сейчас еще существует неопределенность относительно того, какие именно клетки являются важнейшими мишенями при первичном инфицирования ВИЧ. Инфицированные макрофаги, которые составляют менее 1% всех инфицированных клеток, являются важнейшими для распространения вируса в организме. Количество инфицированных макрофагов небольшая, но макрофаги резистентные к цитопатический эффект ВИЧ и живут относительно долго, выделяя вирусные частицы протяжении этого времени. Клетки Лангерганса и дендритные клетки слизистых важны мишенями ВИЧ за полового способа передачи инфекции. Недавно было показано, что рецептор дендритных клеток (DC-SIGN) привлечен к эффективному связывания ВИЧ и передачи вируса Т-лимфоцитам. DC-SIGN - гомолог - dC-SIGnR - экспрессированных на эндотелиальных клетках синусоидов печени, клетках эндотелия лимфатических узлов и микроворсинки плаценты может играть определенную роль в передаче ВИЧ клеткам лимфоузлов или в вертикальном передаче вируса. + Течение СПИД определяют по количеству вирусных частиц в плазме крови и по количеству CD4 Т-лимфоцитов. Через несколько дней после попадания вируса в организм развивается виремия. Интенсивная репликация вируса наблюдается в лимфатических узлах. Считают, что именно пораженные дендритные клетки, которые не чувствительны к цитопатический эффект вируса, транспортируют вирус в лимфатические узлы и способствуют поражению лимфоцитов через прямые межклеточные контакты. Виремия способствует распространению вируса по всему организму и инфицирование Т-клеток, макрофагов и дендритных клеток периферических лимфоидных органов. Иммунная система, которая в настоящее время уже распознала вирусные антигены, начинает реагировать на них усилением гуморального и клитиноопосередкованои иммунного ответа. Иммунная система на этом этапе частично контролирует инфекцию и продуцирования вируса. Такой контроль выражается в уменьшении количества вирусных частиц в крови до низких уровней в течение примерно 12 мес. Во время этой фазы заболевания иммунная система остается компетентным и ловко обезвреживает инфекционные агенты другой природы. Никаких клинических проявлений поражения ВИЧ не регистрируется. В сыворотке крови наблюдают незначительное количество вирионов, но большинство ОТ4Т-лимфоцитов периферической крови свободные от вируса. Однако нарушение СD4Т-лимфоцитов в лимфоидных тканях постепенно прогрессирует, а количество СD4Т-лимфоцитов на периферии неуклонно снижается, несмотря на то, что эта популяция лимфоцитов постоянно обновляется.

 

При прогрессирования СПИДа иммунный ответ пациента на другие инфекционные агенты может стимулировать распространение вируса и поражения им лимфоидной ткани. Активация транскрипции генов ВИЧ в лимфоцитах может произойти в ответ на активационные цитокины. СПИД приобретает свою последней фазы, когда наблюдается значительное снижение CD4 Т-лимфоцитов периферической крови и поражаются лимфоидные ткани. Количество вирусных частиц в крови вновь возрастает. Пораженные люди страдают различными оппортунистические инфекции и неоплазмы, поскольку активность CD4 Т-лимфоцитов, необходимая для клитиноопосередкованои и гуморального иммунного ответа, резко снижена. У пациентов наблюдаются нарушения работы почек и нервной системы.

 

Известно, что другие вирусы помимо ВИЧ нарушают иммунные реакции и приводят к развитию инфекций, осложненных другими микроорганизмами. Примером является Т-клеточный лимфотропный вирус человека первого типа (HTLV-1). Подобно ВИЧ, HTLV-1 является ретровирусом, характеризующееся тропизмом к CD4 Т-лимфоцитов, но вместо убийства этих клеток вирус трансформирует их в агрессивные Т-клеточные опухоли, называемые острыми Т-клеточными лейкозами (ГТЛ). Больные ГТЛ, как правило, имеют тяжелые иммуносупрессивные состояния с множественными оппортунистическими инфекциями. Хронические инфекции Mycobacterium tuberculosa и различные поражения, вызываемые грибами, часто приводят к анергии на различные антигены. Хронические паразитарные инфекции могут также приводить к иммуносупрессии. Например, дети в Африке с хронической малярийной инфекции имеют подавлены функции Т-клеток, что может вызвать развитие в них опухолей, индуцированных вирусом Елштейн-Барр. Радиационный иммунодефицит. Пострадиационные снижение устойчивости организма к инфекциям является прямым результатом иммунодефицита. Облучения снижает устойчивость организма практически ко всем типам инфекций. Это подтверждено многими исследованиями с возбудителями микробного и вирусного происхождения. После воздействия радиации часто наблюдают, атрофию тимуса, прогрессирующее изменения в других органах иммунной системы и нарушение пролиферации В-и Т-клеток.

 

Вторая форма иммунной недостаточности - пострадиационные канцерогенез, один из самых частых и опасных проявлений удаленной патологии, развивающийся после воздействия ионизирующего излучения.

 

В каждом конкретном случае почти невозможно точно определить, благодаря сочетанию каких факторов образуются так называемые спонтанные нарушения ДНК, нередко в возрасте приводят к развитию опухолей. Показано, что при воздействии радиации чаще опухоли наблюдаются после облучения дозой 2 -2,5 Гр. Однако шкала радиационных доз, имеют канцерогенный риск, значительно шире. Есть сообщения, что канцерогенными оказываются даже некоторые малые (техногенные) дозы, которые раньше считались безопасными. Возможно, это связано с сочетанием действия радиации с другими факторами. Установлено, что вероятность возникновения онкологического процесса (в отдаленном пострадиационном периоде) части повышается после дозы 1 Гр и выше. В статистическом отношении вероятность заболеть раком возрастает прямо пропорционально дозе. По двойной дозы риск удваивается. Для человека характерно то, что канцерогенный риск после 30 лет удваивается каждые 9 - 10 лет.

 

Канцерогенный процесс возникает на молекулярном уровне в виде генных мутаций, но дальнейшее развитие этих перерожденных клеток зависит от того, пройдут ли они иммунный надзор лимфоцитов.



Загрузка...
Загрузка...
Яндекс.Метрика
Биология      Физика      Химия      Экономика     География
Микробиология      Теоретическая механика     География Белоруссии    География Украины    География Молдавии
Растительность мира      Электротехника    География Грузии    География Армении    География Азербайджана
География Казахстана    География Узбекистана    География Киргизии    География Туркменистана    Природоведение
География Таджикистана    География Эстонии