Мир науки

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Загрузка...

Каждая из цепей двойной спирали ДНК служит матрицей для репликации комплементарных дочерних цепей. При этом образуются две дочерние двухцепочечные молекулы ДНК, причем каждая из них всегда содержит одну старую (родительскую) цепь и одну заново синтезированную цепь.

Такой механизм репликации, когда каждая из удвоившихся молекул ДНК содержит только одну вновь синтезированную цепь, называется полуконсервативным (рис. 136). Участок, где происходит расплетание родительской ДНК и синтез новой ДНК, называется репликативной вилкой.

ДНК бактерий, митохондрий, хлоропластов и некоторых вирусов представляет собой кольцевую двойную спираль. Молекулы ДНК сохраняют во время репликации кольцевую форму, и репликация такого кольца проходит одновременно в двух направлениях, т.е. существуют две репликативные вилки. Обе точки возникают в одной точке и удаляются от нее в обоих направлениях, пока снова не встретятся в точке терминации. У E. coli точка терминации репликации была идентифицирована и оказалось, что она не находится точно на полпути по кругу ДНК, и, следовательно, репликативные вилки должны проходить различные расстояния. В точке терминации два полностью синтезированных дочерних двухцепочечных кольца разделяются: каждое из них содержит одну старую и одну новую цепь.

Участок начала репликации представляет собой нуклеотидную последовательность длиной 100 - 200 п.н., без которой ДНК не может реплицироваться. Эта последовательность содержит палиндромы, за счет чего формирует сложную вторичную структуру, которая узнается специальными клеточными белками, начинающими в этом месте цикл репликации. Именно процесс инициации репликации находится под контролем клеточной регуляции.

Репликация состоит из большого числа последовательных этапов, которые включают узнавание точки репликации, расплетание родительской двухцепочечной молекулы, удержание ее цепей на достаточном расстоянии друг от друга, инициацию синтеза нових дочерних цепей, их удлинение (элонгацию), закручивание цепей в спираль и терминацию репликации. Все эти этапы процесса репликации протекают с большой скоростью и исключительной точностью. В процессе репликации у E. coli участвуют больше 20 различных ферментов и белков, каждый из которых выполняет определенную функцию. Все вместе они формируют комплекс, который называют ДНК-репликазной системой или реплисомой.

Главными "действующими лицами" репликации являются ферменты ДНК- полимеразы. Они синтезирует цепь ДНК в соответствии с уравнением: (dNMP)n + dNTP 6 (dNMP)n+1 + PPi. Клетки E. coli содержат три различные ДНК-полимеразы, обозначаемые I, II и III и имеющие мол. массы 109, 120 и 550 кДа соответственно. Для репликации бактериальной ДНК необходимы ДНК-полимеразы I и III. Элонгацию растущей цепи осуществляет в основном ДНК-полимераза III, а ДНК-полимераза I выполняет специальную вспомогательную функцию. Так же, как и РНК-полимераза, ДНК-полимераза III состоит из нескольких субъединиц: a (140 кДа), b (40 кДа), g (52 кДа), d (32 кДа), e (25 кДа), q (10 кДа) и t (83 кДа). Различные комбинации субъединиц приводят к образованию разных форм ДНК-полимеразы III. Для работы этого фермента необходима "затравка", т.е. небольшой фрагмент предсуществующей ДНК или РНК, к 3'-концу которого ДНК-полимераза III последовательно присоединяет нуклеотиды. ДНК-полимераза III не в состоянии сама по себе без затравки начать синтез новой ДНК, она способна только удлинять уже существующую цепь, причем это она может делать только в присутствии второй цепи, играющей роль матрицы. Субъединица b, или кополимераза III, необходима для узнавання и связывания с цепью-затравкой. Как только фермент присоединяется к правильному месту инициации, субъединица b отделяется и дальше ДНК-полимераза III работает без этой субъединицы. Кроме полимеразной активности ДНК-полимеразы I и III обладают еще 5'63'- и 3'65'-экзонуклеазными активностями, т.е. они могут отщеплять концевые нуклеотиды с любого конца цепи ДНК. Для чего нужна РНК- полимераза II, неизвестно. В репликативной вилке находятся 3'-конец одной растущей цепи и 5'-конец другой.

Однако ДНК-полимераза III может осуществлять синтез новой цепи ДНК только в направлении 5' 6 3' и, следовательно, способна удлинять только одну из двух растущих цепей в направлении движения репликативной вилки. Выходом из этого противоречия является то, что вторая цепь синтезируется прерывисто с образованием коротких фрагментов, которые наращиваются также за счет присоединения новых мономеров к 3'- концу, т.е. в направлении, противоположном движению репликативной вилки. Таким образом, в движущейся репликативной вилке есть ведущая цепь, синтезируемая непрерывно, и отстающая цепь, синтезируемая отдельными фрагментами (рис. 137).

Фрагменты отстающей цепи называются фрагменты Оказаки по имени открывшего их Рейдзи Оказаки (Reiji Okazaki) и требуют для своего синтеза в качестве затравок короткие отрезки РНК, комплементарные матричной цепи ДНК. Эти РНК-затравки образуются в направлении 5' 6 3' из АТФ, ГТФ, ЦТФ и УТФ с помощью фермента праймазы (белок DnaG, 60 кДа). Затем к 3'-концу такой РНК-затравки, состоящей всего лишь из 15 – 20 нуклеотидов, ДНК-полимераза III присоединяет 1 - 2 тыс. Дезоксирибонуклеотидных мономеров, и в результате образуется фрагмент Оказаки (в животных клетках фрагменты Оказаки короче и содержат 150 - 200 нуклеотидов). После завершения синтеза фрагмента Оказаки РНК-затравка удаляется нуклеотид за нуклеотидом с помощью 5'63'-эк- зонуклеазной активности ДНК-полимеразы I. По мере отщепления рибонуклеотидных мономеров каждый из них замещается на соответствующий дезоксирибонуклеотид в ходе полимеразной реакции, осуществляемой самой ДНК-полимеразой I, при этом в качестве затравки используется 3'-конец предыдущего фрагмента Оказаки. Однако ДНК-полимераза I не может совершить последнее ковалентное присоединение фрагмента Оказаки к растущей цепи ДНК. Для этого требуется другой фермент - ДНК-лигаза (75 кДа), который катализирует образование фосфорнодиэфирной связи между 3'-гидроксильной группой на конце цепи ДНК, подлежащей удлинению, и 5'-фосфатной группой новосинтезированного фрагмента Оказаки. Образование этой связи требует затраты энергии, которая поставляется в ходе сопряженного гидролиза пирофосфатной связи НАД+ в бактериальных клетках или АТФ в животных клетках.

Чтобы реплицирующие ДНК ферменты могли "прочитать" нуклеотидную последовательность матрицы, цепи родительской ДНК должны быть разделены хотя бы на коротком участке. Раскручивание двойной спирали и удержание двух цепей на некотором расстоянии друг от друга, чтобы они могли реплицироваться, осуществляется при помощи нескольких специальных белков. Фермент хеликаза (от англ. helix - спираль) или белок rep расплетает короткие участки ДНК, находящиеся непосредственно перед репликативной вилкой. Для раскручивания ДНК требуется энергия: на разделение каждой пары оснований расходуется энергия гидролиза 2 молекул АТФ до АДФ и фосфата. Как только небольшой участок ДНК оказывается расплетенным, к каждой из разделившихся цепей прочно присоединяются несколько молекул белка, связывающегося с одноцепочечной ДНК (ДСБ на рис. 137), которые препятствуют образованию комплементарных пар и обратному воссоединению цепей. Этот белок называется белок SSB (от англ. single-strand binding) и представляет собой тетрамер с мол. массой 74 кДа. Он кооперативно связывается с одноцепочечной ДНК, сохраняя ее в растянутом состоянии. Суть кооперативного способа связывания состоит в том, что связывание одной молекулы белка облегчает связывание другой. В результате однажды начатая реакция связывания на определенной молекуле ДНК быстро распространяется до тех пор, пока вся одноцепочечная ДНК не будет покрыта флоем SSB. Благодаря этому нуклеотидные последовательности цепей ДНК оказываются доступными для репликативной системы.

Другой ДНК-связывающий белок DnaB (300 кДа, гексамер) совместно с белком DnaC и, вероятно, с некоторыми дополнительными белками помогает праймазе инициировать синтез РНК-затравок. Вместе эти белки формируют комплекс, называемый праймосома. Праймосома собирается из белковых компонентов на специфическом "предзатравочном" участке ДНК, имеющем вид шпильки, образованной последовательностью из 55 оснований.

Затем праймосома перемещается вдоль родительской цепи к участку инициации синтеза затравки. Во время движения праймосомы расположенный перед ней белок SSB вытесняется, а само движение требует энергии гидролиза АТФ. Обнаружив участок инициации, праймаза синтезирует РНК-затравку из 15 - 50 нуклеотидов. За это время реп- ликативная вилка продвигается вперед, и со стороны 3'-конца перед праймосомой образуется одноцепочечная область, которая застраивается белком SSB. После каждого события инициации праймосома продвигается к вдоль одноцепочечной области в направлении 5' 6 3' к участку инициации синтеза следующего фрагмента Оказаки (рис. 138).



Загрузка...
Загрузка...
Реферати і шпаргалки на українській мові.
Биология      Физика      Химия      Экономика     География
Микробиология      Теоретическая механика     География Белоруссии    География Украины    География Молдавии
Растительность мира      Электротехника    География Грузии    География Армении    География Азербайджана
География Казахстана    География Узбекистана    География Киргизии    География Туркменистана    Природоведение
География Таджикистана    География Эстонии