Мир науки

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Загрузка...

Последовательность расположения нуклеотидов в ковалентной цепи нуклеиновой кислоты называется ее ПЕРВИЧНОЙ СТРУКТУРОЙ. Комплементарные азотисте основания способны образовывать водородные связи друг с другом, и это приводит к формированию ВТОРИЧНОЙ СТРУКТУРЫ нуклеиновой кислоты.

Подавляющее большинство молекул ДНК являются двухцепочечными (рис. 4), и это накладывает ограничения на их нуклеотидный состав. Для двухцепочечных ДНК всегда cA = cT и cG = cC, где c - мольная доля. Этот факт, открытый и обстоятельно изученный Э. Чаргаффом (E. Chargaff), был одним из важнейших среди тех данных, которые привели к концепции двойной спирали для ДНК. Он озна- чает, что для описания состава двухцепочечной ДНК необходима только одна переменная cG+C (или cA+T). Однако из выполнения правил Чаргаффа еще не следует, что ДНК обязательно является двухцепочечной.

GC содержание природных нуклеиновых кислот существенно различается, но нет никаких указаний на то, что нуклеотидный состав РНК или ДНК хоть как-то коррелирует с биологическими функциями этих молекул. Все же для большинства организмов отношение cA+T/cG+C не слишком далеко отклоняется от среднего значения 1.3 (рис. 12). Исключение составляют некоторые бактерии и минорная фракция эукариотической ДНК – так называемая сателлитная ДНК. В состав некоторых ДНК и РНК входят необычные модифицированные основания, называемые минорными. Вероятно, они необходимы для выполнения каких-то специальных функций нуклеиновых кислот, поскольку у болем развитых в эволюционном отношении организмов содержание необычных нуклеотидов выше, чем у более примитивных. Некоторые основания отдельных ДНК метилированы, причем присутствуют они в очень специфичных последовательностях. Эта модификация служит маркером для опознавания собственных молекул ДНК от чужеродных и является механизмом защиты против внутриклеточных ферментов-рестриктаз, которые в отсутствие метилирования расщепляли бы ДНК в этих местах.

Вторичной структурой двухцепочечных молекул ДНК является структура двойной спирали, предложенная Д. Уотсоном (J. Watson) и Ф. Криком (F. Crick). Однако фиксированная структура уотсон-криковских пар оснований допускает большое многообразие форм двойной спирали. На рис. 13 схематически изображена вторичная структура Аи В-форм ДНК. ДНК в водных растворах принимает В-форму, которая считается уотсон-криковской структурой, но при определенных условиях она может быть переведена в А-спираль. Находятся ли природные ДНК в А-форме - неизвестно, но можно с достаточной определенностью сказать, что комплементарне комплексы РНК-ДНК существуют в А-, а не в В-форме. Обе структуры являются правыми спиралями, однако В-форма похожа на обычную винтовую лестницу и содержит 10 пар оснований на виток, а А-форма - на винтовую лестницу, ступеньки которой наклонены к центру, и имеет 11 пар оснований на виток. В литиевой соли ДНК при низкой влажности обнаружена С-форма ДНК, которую можно рассматривать как разновидность В-формы с числом оснований на виток, равным 9.3. Существуют и другие варианты как А-, так и В- форм, так что они представляют скорее семейства структур, чем строго определенные конформации двойной спирали. Наряду с семействами правоспиральных В- и А-форм существуют участки ДНК, в которых регулярно чередуются пуриновые и пиримидиновые основания и которые могут переходить в левоспиральную Z-форму. Названная так из-за зигзагообразного вида линии сахарофосфатного остова Z-форма может возникать в клетке в виде небольших участков в составе В-формы при возникновении стерических напряжений (при сверхспирализации) в молекуле ДНК. Двухцепочечные РНК образуют правые спирали с 11 или 10 основаниями на виток. При определенных условиях в нуклеиновых кислотах могут формироваться трехцепочечные спиральные участки (триплексы).

Одноцепочечные молекулы нуклеиновых кислот, как и двухцепочечные, тоже часто образуют спирали, скручиваясь сами на себя и формируя таким образом определенную последовательность петель, или шпилек. Зная нуклеотидную последовательность одноцепочечной молекулы, можно построить предположительные модели ее вторичной структуры, причем часто можно обойтись без применения специальных алгоритмов, если руководствоваться определенными правилами. Так, длинные непрерывные взаємно комплементарные участки почти всегда будут образовывать двухцепочечные шпильки; один длинный двухцепочечный участок предпочтительнее двух более коротких с суммарной длиной, равной протяженности этого участка; из двух эквивалентных взаимно исключающих спиральных участков более стабильным является тот, у которого выше GC- содержание (поскольку G и C образуют три водородные связи при комплементарном спаривании, а A и T - только две) и т.д. О взаимодействиях нуклеотидов известно достаточно много для того, чтобы эти правила можно было использовать даже для количественной оценки стабильности конкретных структур.

Помимо формирования спиральных участков вторичной структуры, нуклеиновые кислоты способны и к образованию специфической пространственной конфигурации, т.е. ТРЕТИЧНОЙ СТРУКТУРЫ. Первой нуклеиновой кислотой, для которой методом рентгеноструктурного анализа детально установлена третичная структура, была фенилаланиновая тРНК из дрожжей (рис. 14). Вероятно, все тРНК имеют сходную третичную структуру. Детальная информация о третичной структуре ДНК пока отсутствует, хотя предполагают, что в ней могут образовываться изломы с нарушением спаривания двух соседних пар оснований и небольшим раскручиванием остова. Повторяясь, через каждые 10 пар оснований такие изломы способны порождать левую сверхспираль с диаметром около 10 нм, каждое звено которой состоит из 10 пар оснований, так что на каждые 140 пар оснований приходится приблизительно 1.5 витка.

Другой тип изломов приводит к образованию правой сверхспирали, содержащей 9.6 пар оснований на виток. Однако в клетке ДНК обычно находится в постоянном контакте с белками, образуя различные ДНК-белковые комплексы, для формирования которых существенной оказывается, вероятно, лишь вторичная структура ДНК.

Примеры ЧЕТВЕРТИЧНОЙ СТРУКТУРЫ в системах, состоящих исключительно из нуклеиновых кислот, очень немногочисленны. Один из них - очень прочный межмолекулярный комплекс, который образуют молекулы тРНК с комплементарними антикодонами in vitro. Роль этого явления in vivo не ясна, но может служить указанием на существование еще не известных взаимодействий нуклеиновых кислот на уровне четвертичной структуры в клетке.



Загрузка...
Загрузка...
Реферати і шпаргалки на українській мові.
Биология      Физика      Химия      Экономика     География
Микробиология      Теоретическая механика     География Белоруссии    География Украины    География Молдавии
Растительность мира      Электротехника    География Грузии    География Армении    География Азербайджана
География Казахстана    География Узбекистана    География Киргизии    География Туркменистана    Природоведение
География Таджикистана    География Эстонии