Мир науки

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Загрузка...

Популяция - это совокупность свободно скрещивающихся особей одного вида, которая длительно существует на обособленной территории относительно изоолированно от других совокупностей особей того же вида. Совокупность генов популяции в данный период времени называется генофондом популяции.

В отличие от генома индивидуального диплоидного организма, в котором может быть только два аллельных гена, в генотипе популяции может быть больше чем два аллельных генов. Количество каждого вида генов в популяции описывается величиной, аналогичной концентрации для молекул, называемой частотой гена, которая определяется как отношение числа генов данного вида к общему числу всех аллельных для этого вида генов в генофонде популяции. 

Частоты генов в генофонде постоянно меняются под действием мутаций, естественного отбора, миграции организмов из одной популяции в другую и из-за случайных причин. Однако в достаточно большой популяции (когда случайными изменениями можно пренебречь), при отсутствии мутаций, естественного отбора и миграций, а также при свободном скрещивании особей и отсутствие предпочтений в спаривании особей при половом размножении частоты генов, а следовательно, и генотипов остаються постоянными из поколения в поколение. Это явление называется законом генетического равновесия в популяциях Харди-Вайнберга.

Предположим, что в популяции есть только два вида аллельных генов А и а, и что в данном поколении популяции частоты этих генов в генофонде составляют p и q соответственно (p + q = 1). Тогда в соответствии с законом Харди-Вайнберга эти частоты и частоты генотипов АА, Аа и аа, которые равны p2, 2pq и q2 соответственно, будут оставатися постоянными во всех последующих поколениях. Популяция, подчиняющаяся закону Харди- Вайнберга, является идеализированной подобно модели идеального газа. Однако есть случаи, когда этот закон достаточно хорошо выполняется на практике. Например, при наследовании групп крови системы АВ0, о которой подробно будет рассказано дальше. Популяция, подчиняющаяся закону Харди-Вайнберга, - это статическая популяция.

Рассмотрим теперь динамику популяции, на которую постоянно действуют факторы, изменяющие частоты генов в генофонде. Практически всегда природные популяции испытывают давление естественного отбора, который действует через приспособленность организмов. Приспособленность данного генотипа (WG) можно определить как число зигот, продуцируемых в данном поколении к числу зигот предыдущего поколения. WG слагается из жизнеспособности генотипа (vG, вероятность завершения онтогенеза зиготой с генотипом G), половой активности (rG, верояность скрещивания особей, имеющих генотип G) и плодовитости (fG, среднее число зигот, продуцируемое особями с генотипом G): WG = vG7rG7fG. Например, если в данном поколении было 1000 зигот генотипа G, из них 45% прошли ранние эмбриональные фазы, 1/3 от оставшихся достигли половой зрелости, 2/3 от оставшихся вступили в скрещивания и произвели в среднем по 15 зигот, то WG = 1.5. Поскольку реальные значения приспособленности генотипов найти трудно, то обачно используют относительные величины приспособленности, принимая приспособленность одного из генотипов за 1.

Рассмотрим популяцию с двумя аллельными генами А и а. Примем за 1 приспособленность гетерозигот: WAa= 1. Тогда WAA= 1-s и Waa= 1-t, где s и t - относительные коэффициенты отбора (могут быть как положительными, так и отрицательными). Частоты генотипов АА, Аа и аа, которые в данном поколении были p2, 2pq и q2 соответственно, в следующем поколении (после отбора) будут составлять p2WAA, 2pqWAa и q2Waa. Величина WM = p2WAA+ 2pqWAa+ q2Waa = 1-(sp2+ tq2) называется средняя приспособленность популяции. Новые частоты генов А и а вы- разятся как p'=(p2WAA+ pqWAa)/WM и q'=(pqWAa+ q2Waa)/WM, откуда p'=p(1-sp)/(1-(sp2+ tq2)). Реккурентное соотношение p'=F(p), связывающее частоту гена в данном поколении с частотой этого гена в предыдущем уравнении, называется уравнением динамики популяции.

Изменяясь из поколения в поколение, частота p в конце концов может стабилизироваться и дальше оставаться постоянной. Такая частота (p*) называется стационарной частотой и ее можно найти из уравнения p*=F(p*). Однако найденная таким образом стационарная частота может быть устойчивой и неустойчивой. Устойчивая стационарная частота характеризуется тем, что после небольшого отклонения ее от величины p* она возвращается к этой же величине в последующих поколениях. Напротив, в случае неустойчивой стационарной частоты даже незначительное отклонение от p* в последующих поколениях продолжает увеличиваться, и частота p достигает нового стационарного значения. Естественно, что в природе реализуются только устойчивые стационарные частоты. Условие устойчивости находим разложив F(p) в ряд Тейлора в окрестности точки p*: F(p) ~ F(p*) + F'(p*)(p-p*) = p* + F'(p*)(p-p*). Частота гена в следующем поколении будет: p' = F(p) ~ p* + F'(p*)(p-p*), откуда p'- p* ~ F'(p*)(p-p*). Точка будет стационарной, когда отклонение p'-p* будет меньше, чем отклонение p-p*, т.е. при условии 2F'(p*)2<1.

Возвращаясь к уравнению динамики популяции с отбором p'= p(1-sp)/(1-(sp2+ tq2)), находим три стационарные частоты: 1) p*=0, т.е. полное вытеснение гена А геном а; этот процесс устойчив при t<0, т.е. когда приспособленноть генотипа аа выше приспособленности генотипа Аа; 2) p*=1, т.е. полное вытеснение гена а геном А; этот процесс устойчив при s<0, т.е. когда приспособленность генотипа АА выше приспособленности генотипа Аа; 3) p*=t/(s+t), случай сбалансированного полиморфизма, когда гены А и а сосуществуют в постоянном соотношении; этот полиморфизм устойчив, когда s>0 и t>0, т.е. когда приспособленность гетерозигот выше, чем обоих гомозигот. Если в популяции происходит мутация, например, А 6 а с частотой m, то если частота гена А в данном поколении равна p, через n поколений она будет составлять pn = p(1-m)n.

Частоты мутаций, как правило, лежат в пределах 10-6- 10-4. Мутации служат материалом для отбора, поэтому представляет интерес рассмотреть уравнение динамики популяции с мутацией и отбором по этой мутации: p'=p(1-m)(1-sp)/(1-(sp2+ tq2)).

Если мутация летальная: WAA= WAa=1 и Waa= 0, то s=0 и t=1. В этом случае уравнение динамики популяции упрощается: p = p(1-m)/(1-q2) = (1-m)/(1+q) и имеет единственную устойчивую стационарную частоту 1-p* = q* = m1/2. Это показывает, что даже такая вредная мутация, как летальная, не может быть полностью вытеснена отбором и продолжает сохраняться в популяции в гетерозиготном состоянии. Если же мутация не летальная, а просто вредная - понижающая приспособленность генотипа аа: WAA= WAa=1, Waa= 1-t, 0<t<1, то q* = = (m/t)1/2. Аналогичным образом можно получить и исследовать уравнения динамики популяции с миграцией, с предпочтением при спаривании и с другими различными комбинациями факторов, изменяющими частоты генов в генофонде.



Загрузка...
Загрузка...
Реферати і шпаргалки на українській мові.
Биология      Физика      Химия      Экономика     География
Микробиология      Теоретическая механика     География Белоруссии    География Украины    География Молдавии
Растительность мира      Электротехника    География Грузии    География Армении    География Азербайджана
География Казахстана    География Узбекистана    География Киргизии    География Туркменистана    Природоведение
География Таджикистана    География Эстонии