Мир науки

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Загрузка...

Интерференция света в тонких пленках - примерПри падении световой волны на тонкую прозрачную пленку или пластину имеет место отражение от обеих поверхностей пленки.

В результате возникают когерентные световые волны, которые обусловливают интерференцию света.


Пусть на прозрачную плоскопараллельную пленку с показателем преломления n и толщиной d под углом и падает плоская монохроматическая волна. Падающая волна частично отражается от верхней поверхности пленки (луч 1). Преломленная волна, частично отразившись от нижней поверхности пленки, на верхней поверхности вновь частично отражается, а преломленная волна (луч 2) накладывается на первую отраженную волну (луч 1). Параллельные лучи 1 и 2 когерентны между собой, они дают локализованную на бесконечности интерференционную картину, которая определяется оптической разностью хода. Оптическая разность хода для проходного света отличается от оптической разности хода для отраженного света на, так проходящий свет не отражается от оптически густой среды. Таким образом, максимумам интерференции в отраженном свете соответствуют минимумы интерференции в проходящем свете, и наоборот.


Интерференция монохроматического света на плоскопараллельной пластинке определяется величинами ?0, d, n, и и. Разным углам падения и отвечают разные точки интерференционной картины (полосы). Интерференционные полосы, возникающие в результате наложения волн, падающих на плоскопараллельную пластину под одинаковыми углами, называют полосами одинакового наклона. Параллельные лучи 1 и 2 сходятся в бесконечности, поэтому говорят, что полосы одинакового наклона локализованы на бесконечности. Для их наблюдения используют собирательную линзу и экран, расположенный в фокальной плоскости линзы.


6.4.2. Рассмотрим интерференцию света на клинообразной пленке переменной толщины. Пусть на клин с углом ? между боковыми гранями падает плоская волна (лучи 1, 2 на рис. 6.10). Очевидно, что отраженные лучи 1 ? и 1 ? ? от верхней и нижней поверхностей клина (так же как 2 ? и 2 ? ?) когерентные между собой. Они могут интерферировать. Если угол ? мал, то оптическая разность хода лучей 1 ? и 1.
 


где dm - средняя толщина клина на участке АС. Из рис. 6.10 видно, что интерференционная картина локализована у поверхности клина. Система интерференционных полос возникает за счет отражения от мест пленки имеют одинаковую толщину. Эти полосы называются полосами одинаковой толщины. Пользуясь (6.21), можно определить расстояние ?у между двумя соседними максимумами для случая монохроматического света, нормального падения лучей и малого угла ?:

Частным случаем полос одинаковой толщины являются кольца Ньютона, возникающие в воздушной прослойке между Плосковыпуклая линзой большого радиуса кривизны R и плоской стеклянной пластиной, которые соприкасаются в точке Р. При наложении отраженных волн возникают интерференционные полосы одинаковой толщины, имеющие при нормальном падении света вид концентрических колец. В центре картины находится интерференционный минимум нулевого порядка. Это обусловлено тем, что в точке Р разность хода между когерентными лучами определяется только потерей полуволны при отражении от поверхности пластины. Геометрическим местом точек одинаковой толщины воздушной прослойки между линзой и пластиной есть круг, поэтому интерференционная картина наблюдается в виде концентрических темных и светлых колец.В проходящем свете наблюдается дополняющая картина - центральный круг светлое, следующее кольцо темное и т. д.
Найдем радиусы светлых и темных колец. Пусть d - толщина воздушного слоя на расстоянии r от точки Р. Оптическая разность хода ? между лучом, который отбился от пластины, и лучом, который потерпел отражения на границе раздела выпуклая поверхность линзы - воздух. Очевидно, что в проходящем свете формулы (6.22) и (6.23) меняются местами. Экспериментальные измерения радиусов колец Ньютона позволяют рассчитать по этим формулам радиус Плосковыпуклая линзы R. Изучая кольца Ньютона в целом, нельзя давать оценку качеству обработки поверхностей линзы и пластины. Следует заметить, что при наблюдении интерференции в белом свете интерференционная картина приобретает радужной расцветки.


6.4.3. Явление интерференции света лежит в основе работы многочисленных оптических приборов - интерферометров, с помощью которых с большой точностью измеряют длину световых волн, линейные размеры тел и их изменение, а также измеряют показатели преломления веществ.
В частности, на рис. 6.12 изображена схема интерферометра Майкельсона. Свет от источника S падает под углом 450на полупрозрачную пластину Р1. Половина падающего пучка света отражается в направлении луча 1, половина проходит через пластину в направлении луча 2. Пучок 1 отражается зеркалом М1 и, возвращаясь назад, снова проходит через пластину Р1 (). Пучок света 2 идет к зеркалу М2, отражается от него и, отразившись от пластины Р1, идет в направлении луча 2 ?. Поскольку луч 1 проходит через пластину Р1 трижды, а луч 2 только один раз, то для компенсации разности хода на пути луча 2 относится пластина Р2 (такая же как и Р1, но без полупрозрачного покрытия).

Интерференционная картина зависит от положения зеркал и геометрии пучка света, падающего на прибор. Если падающий пучок параллельный, а плоскости зеркал М1 и М2 почти перпендикулярны, то в поле зрения наблюдаются интерференционные полосы равной толщины. Смещение картинки на одну полосу соответствует смещению одного из зеркал на расстояние Таким образом, интерферометр Майкельсона используется для точных измерений длины. Абсолютная погрешность при таких измерениях составляет ? 10-11 (м). Интерферометр Майкельсона можно использовать для измерения малых изменений показателей преломления прозрачных тел в зависимости от давления, температуры, примесей.


А. Смакула разработал способ просветления оптических устройств для уменьшения потерь света, обусловленных его отражением от Заломного поверхностей. В сложных объективах число отражений велико, поэтому потери светового потока довольно значительны. Чтобы элементы оптических систем сделать просветленными, их поверхности покрывают прозрачными пленками, показатель преломления которых меньше, чем стекла. При отражении света на границе раздела воздух-пленка и пленка-стекло возникает интерференция отраженных волн. Толщину пленки d и показатели преломления стекла nc и пленки n подбирают так, чтобы отраженные волны гасят друг друга. Для этого их амплитуды должны быть ровными, а оптическая разность хода соответствовать условию минимума.



Загрузка...
Загрузка...
Реферати і шпаргалки на українській мові.
Биология      Физика      Химия      Экономика     География
Микробиология      Теоретическая механика     География Белоруссии    География Украины    География Молдавии
Растительность мира      Электротехника    География Грузии    География Армении    География Азербайджана
География Казахстана    География Узбекистана    География Киргизии    География Туркменистана    Природоведение
География Таджикистана    География Эстонии