Мир науки

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Загрузка...

Наследственность - это способность организмов передавать следующему поколению свои признаки и свойства, т.е. воспроизводить себе подобных. При этом, как правило, не происходит точного копирования родительских организмов, а наследственность сопровождается изменчивостью.

Различают наследственную (генотипическую) и ненаследственную (фенотипическую, или модификационную) изменчивость. Ненаследственная изменчивость - это результат изменений условий среды, в результате чего организм изменяется в пределах, задаваемых генотипом. Ненаследственная изменчивость важна для приспособления организмов к разным условиям среды, в которых они оказываются, для их выживания и сохранения их потомства. Однако для эволюционных процессов нужна наследственная изменчивость, которая служит единственным источником разнообразия, из которого происходит отбор новых наиболее приспособленных форм организмов.

Разновидностью наследственной изменчивости является мутационная изменчивость. Несмотря на высокую точность процессов репликации, транскрипции и распределения хромосом во время клеточного деления по дочерним клеткам, с низкой частотой ошибки все же возникают и не всегда устраняются системами репарации. Любое стойкое изменение последовательности нуклеотидов в ДНК называется мутацией. Мутацию называют спонтанной, корда причины, вызвавшие ее, не контролируются, и индуцированной, когда она вызвана контролируемыми факторами. Такими факторами (мутагенами) чаще всего бывают высокоэнергетическое излучение (ультрафиолетовое или ионизирующее) или активне химические вещества (см. раздел "РЕПАРАЦИЯ ДНК"). Частота спонтанных мутацій обычно лежит в пределах 1 на 105 - 107 генов и различна для разных генов – есть консервативные и есть быстро мутирующие гены. Мобильные элементы генома (IS- элементы и транспозоны) способны повышать частоту мутаций в фиксированных участках генома на 2 - 3 порядка.

Мутации могут возникать в любой период жизни организма, затрагивая как клетки тела (соматические мутации), так и половые клетки. Соматические мутации проявляються обычно как "мозаичность" организма, поскольку все потомки мутантной клетки имеют измененный признак. Они могут охватить больший или меньший участок организма, но, как правило, не наследуются. Исключение составляют только те соматические мутации, которые охватывают точки роста растений. При формировании из таких мутантных точек роста цветоносных побегов, цветков, плодов и семян происходит передача мутантного признака следующим поколениям.

В большинстве случаев мутации приводят к значительному снижению жизнеспособности организма, а иногда и к его гибели (летальные мутации). Однако другие мутации могут оказаться полезными для организма, придавая ему такие особенности, как повышение продуктивности, стойкость к заболеваниям и т.п. Хотя полезные мутации возникают крайне редко и не являются приспособительными изменениями организма, именно они представляют собой исходный материал для эволюционного процесса. При скрещивании мутантных организмов с другими, нормальными или мутантными по другим генам, возникают новые соединения генов. Разнообразные генетические комбинации, которые возникает при этом, являются материалом для естественного отбора и приводят к эволюции организмов.

В зависимости от того, какие изменения генома приводят к появлению мутаций, выделяют генные, или точечные мутации, хромосомные перестройки и геномные мутации. При генных (точечных) мутациях происходят изменения структуры ДНК только в одном месте внутр. гена. При этом может произойти замена одного основания другим (мутація замещения), в результате чего при синтезе белка на место одной из аминокислот будет включена другая. Классическим примером такой мутации является замена Т на Ц в 6-м триплете нуклеотидной последовательности, кодирующем b-субъединицу молекулы гемоглобина.

В результате в белке происходит замена только одной аминокислоты (глутами- новой кислоты на валин), однако это приводит к появлению "липкого" участка на молекуле, благодаря которому молекулы гемоглобина ассоциируют в крупные нерастворимые комплексы, которые деформируют эритроциты, придавая им характерную серповидную форму. Такие "склеенные" молекулы гемоглобина не могут нормально функционировать, а серповидные эритроциты застревают в мелких капиллярах и отличаются повышенной хрупкостью. Все это проявляется как тяжелое наследственное заболевание - серповидноклеточная анемия. Мутанты, которые синтезируют измененные, но все же частично функционирующие белки, называются мутантами с неполностью подавленной функцией или leaky-мутантами. Но часто замена одной аминокислоты на другую не приводит к значительным изменениям в свойствах продукта трансляции - белка.

Такие молчащие мутации накапливаются в процессе эволюции, и именно подсчет числа молчащих мутаций является основой для сравнительно-молекулярного метода построения эволюционных деревьев, о котором было рассказано в первой лекции. Более существенные изменения в характере синтеза белка вызываются выпадением или вставкой лишнего нуклеотида, вследствие чего изменяется весь порядок считывания генетической информации (сдвиг рамки считывания) и образуется совсем иной белок по сравнению с тем, который был запрограммирован в немутантной молекуле ДНК. Во время деления клеток иногда могут возникать существенные изменения в строении хромосом, которые называются хромосомными перестройками или аберрациями. Нехватками называют такие аберрации, при которых хромосома теряет концевой участок.

Плечо хромосомы укорачивается, а фрагмент и гены, находящиеся в нем, теряются при делении ядра. Делеция - это тоже потеря участка хромосомы, но не концевого фрагмента, а средней ее части. Делеции хорошо видны в мейозе: в месте делеции вторая гомологичная хромосома при конъюгации образует петлю. Если в хромосоме какой-то участок не выпадает, а наоборот, повторяется несколько раз, то образуется аберрация, называемая дупликация. При инверсии участок, который оторвался от хромосомы, прикрепляется к ней снова, но в перевернутом на 180о положении. Хромосомы с дупликациями и инверсиями, как и с делециями, можно обнаружить по характерным чертам расположения гомологичных хромосом при конъюгации. Транслокации связаны с обменом участками между негомологичными хромосомами или с прикреплением участка хромосомы одной пары к хромосоме другой пары. Фрагментацией называется распад хромосомы на части, причем часть, которая несет центромеру, может принимать участие в мейозе, в то время как остальные фрагменты обычно разрушаются.

Если хромосомы, которые разделились в процессе митоза, не разойдутся в анафазе к полюсам и останутся в том же ядре, то количество хромосом в нем удвоится. Такое жеудвоение может произойти в результате слияния двух клеток перед началом мейоза. Явление кратного увеличения хромосом в ядре называется полиплоидия. У растений полиплоидия довольно широко распространена в естественных условиях, и многие виды имеют полиплоидные числа хромосом, в то время как у животных полиплоидные виды встречаются редко и только в случаях партеногенетического размножения. Это происходит потому, что механизм полового размножения у полиплоидных животных нарушается, и они, как правило, бесплодны.

Полиплоидные растения по качественным признакам обычно мало отличаются от сходных диплоидных форм, но размеры клеток и многих органов у них значительно больше, чем у диплоидов, что является прямым следствием более крупных ядер, заключающих більше хромосом, чем ядра диплоидов, а следовательно, и более интенсивной транскрипции генов и синтеза белков (рис. 165). Эти особенности полиплоидов вполне понятны, т.к. взаимное соотношение различных типов хромосом у них остается неизменным, а изменяется только доза каждого гена. Полиплоиды, кратность увеличения хромосомного набора которых четная, - диплоиды, тетраплоиды, гексаплоиды и т.д. - имеют довольно высокую плодовитость. Полиплоиды, кратность увеличения хромосомного набора которых нечетная, - триплоиды, пентаплоиды, гептаплоиды и т.д. - напротив, отличаются резко пониженнойплодовитостью. Объясняется это тем, что у нечетных полиплоидов один из наборов хромосом оказывается лишним в мейозе, т.к. хромосомы этого набора не имеют гомологичных партнеров и образуют униваленты, отходящие в дочерние клетки не зависимо друг от друга, что приводит к образованию полисомических половых клеток с резко пони- женной жизнеспособностью или даже совсем нежизнеспособных.

Четные полиплоиды легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху. Поэтому они очень распространены в северных и высокогорных районах. Например, 80% всех изученных видов, которые произрастают на Шпицбергене (76 - 80о северной широты), являются полиплоидами, а в резко континентальных условиях высокогорного Памира полиплоидов произрастает до 85%. Большинство культурных растений (пшеница, рожь, гречиха, свекла и многие другие) тоже являются полиплоидами, а триплоидные формы арбуза наряду с высокой урожайностью и высоким качеством мякоти обладают еще одним положительным свойством - они не содержат семян.

Благодаря полиплоидии у растений возможна межвидовая гибридизациия. При слиянии двух гамет отдаленно родственных организмов (например, из разных родов одного семейства) образуется зигота, которая может нормально делиться митозом, но корда наступает время образования гамет в мейозе, не все хромосомы могут найти себе гомологичную пару, и отсюда неизбежное бесплодие при отдаленной гибридизации. Например, гибрид лошади и осла - мул - наделен исключительной выносливостьюно мулы обоих полов стерильны, так как в их клетках на 31 хромосому осла приходится 32 лошадиных хромосом. Однако у растений возможно полиплоидное увеличение числа хромосом объединенного набора из двух хромосомных наборов разных видов, и после этого мейоз проходит нормально и развивается плодовитое потомство. Таким способом был искусственно получен гибрид редьки и капусты, и таким образом могут возникать межвидовые гибриды растений и в природе. Такие гибридные полиплоидные растения называются аллоплоидами, в отличие от внутривидовых полиплоидов - аутополиплоидов, и предполагается, что аллополиплоиды играют весьма значительную роль в эволюции растений, очень быстро приводя к образованию новых видов. При неправильном расхождении хромосом во время мейоза возникают организмы с добавлением или недостачей одной или нескольких хромосом, называемые анеуплоидами.

Для обозначения разных анеуплоидов применяется следующая терминология. Диплоидные организмы, имеющие одну из хромосом в тройном количестве, называются трисомиками, имеющие две хромосомы в тройном количестве - двойными трисомиками, имеющие одну из хромосом в четверном количестве - тетрасомиками. Диплоидные организмы, у которых не достает одной хромосомы, называются моносомиками, если не хватает двух различных хромосом - двойными моносомиками и т.д., но если у них отсутствуют две одинаковые хромосомы, то их называют нулисомиками, что означает полное отсутствие одной из пар нормального набора хромосом.



Загрузка...
Загрузка...
Реферати і шпаргалки на українській мові.
Биология      Физика      Химия      Экономика     География
Микробиология      Теоретическая механика     География Белоруссии    География Украины    География Молдавии
Растительность мира      Электротехника    География Грузии    География Армении    География Азербайджана
География Казахстана    География Узбекистана    География Киргизии    География Туркменистана    Природоведение
География Таджикистана    География Эстонии